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Introduction ____________Discussion

Self-Driving Laboratories (SDLs) integrate automated workflows with * Teleoperation & Waypoints: Teleop is reliable (e.g., glove box use)

data-driven decision-making to accelerate materials discovery [1,2]. but human-dependent; waypoints are stable yet rigid, small substrate
Conventional lab work is labor-intensive, slow, and prone to  ghifts break sequences and motions are abrupt.

reproducibility issues [3]. Automation enables high-throughput, precise
experimentation, greatly improving efficiency [4]. A mobile robotic
chemist performed 688 experiments in eight days, 1,000 times faster
than manual methods [4]. Thin-film device fabrication is a prime  Mmismatch.

application, requiring optimization across a vast parameter space (a . RL (100 episodes): Trained up to 40k epochs; 20k sorted one vial,
general workflow shown in figure 1) [2]. Automated platforms enable
efficient execution of techniques like spin coating and lay the
groundwork for multilayer thin-film fabrication [2].

« IK (MuJoCo): Smooth, scalable trajectories in simulation; not
hardware-ready due to solver instabilities and servo dynamics

40k sorted one red + one blue (best attempt). Robustness expected
with depth perception (extra cameras), more episodes, and ~300k

epochs.
Annealing .
Conclusion
Precursor We demonstrate a proof of concept for substrate transfer using the
deposgion SO-101 robotic arm, with teleoperation and waypoints providing reliable
control but lacking flexibility, IK offering smooth trajectories in simulation,
O Spin Coater w Hotplate and RL showing potential despite limited training.

Liquid Handling Next layer deposition
Figure 1. Automated thin-film fabrication workflow: liquid handling, spin coating, robotic transfer to hotplate Future SCOpE. COmbmmg RL with IK’ plUS extended trammg and depth

for annealing, and return for multilayer deposition. Sensing, can enable scalable Self-driving thin-film automation.

Results
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Figure 3. LeRobot SO-101
Robotic Arm[ 5]. 6-DOF used
for substrate handling, mounted
on a custom base compatible
with optical breadboard slots.
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R

Figure 2. Pip-Bot: ietting gantry system with XYZ control, Figure 4. Modi_fied.CAD model of Massi
designed and built by A*STAR Laboratory for automated Spin Coater with tilted floor and drain.[6]
liquid handling
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Figure 5. Reinforcement Learning Setup: Figure 6. Inverse Kinematics Simulation: MuJoCo model of the ~ Figure 7. Teleoperation: Manual control Figure 8. Waypoint Control:
S0-101 leader—follower arms with overhead 6-DOF SO-101 executing a ball-in-cup pick-and-place task. of the leader arm replicated in real time S0-101 performing pick-and-
camera; vials labeled red/blue. by the follower arm, place of a test object
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